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Abstract

The recently developed time-periodic fluctuation-dissipation theorem (FDT)

provides a very convenient way of addressing the climate change of atmospheric

systems with seasonal cycle by utilizing statistics of the present climate. A

triad nonlinear stochastic model with exactly solvable first and second order

statistics is introduced here as an unambiguous test model for FDT in a time-

periodic setting. This model mimics the nonlinear interaction of two Rossby

waves forced by baroclinic processes with a zonal jet forced by a polar temper-

ature gradient. Periodic forcing naturally introduces the seasonal cycle into the

model. The exactly solvable first and second order statistics are utilized to com-

pute both the ideal mean and variance response to the perturbations in forcing

or dissipation and the quasi-Gaussian approximation of FDT (qG-FDT) that

uses the mean and the covariance in the equilibrium state. The time-averaged

mean and variance qG-FDT response to perturbations of forcing or dissipation

is compared with the corresponding ideal response utilizing the triad test-model

in a number of regimes with various dynamical and statistical properties such

as weak or strong non-Gaussianity and resonant or non-resonant forcing. It is

shown that even in a strongly non-Gaussian regime, qG-FDT has surprisingly

high skill for the mean response to the changes in forcing. On the other hand,

the performance of qG-FDT for the variance response to the perturbations of

dissipation is good in the near-Gaussian regime and deteriorates in the strongly

non-Gaussian regime. The results here on the test model should provide useful

guidelines for applying the time-periodic FDT to more complex realistic systems
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1. Introduction

The application of the fluctuation-dissipation theorem (FDT) [5, 28] to cli-

mate change science has a growing interest among researchers. The classical

FDT roughly states that in order to obtain the mean response of the system

of identical particles in statistical equilibrium to small external perturbations,

it is sufficient to find certain correlation functions of the unperturbed system.

Motivated by Kraichnan’s generalization of FDT to systems with the Liouville

property [19, 20], Leith [21] suggested that if the climate system satisfied a

suitable fluctuation-dissipation theorem (FDT) then climate response to small

external forcing or other parameter changes could be calculated by estimating

suitable statistics in the present climate. For the general FDT, see [9], [31], and

[23]. The important practical and conceptual advantages for climate change

science when a skillful FDT algorithm can be established is that the linear sta-

tistical response operator produced by FDT can be utilized directly for multiple

climate change scenarios, multiple changes in forcing, dissipation and other pa-

rameters, and inverse modelling directly [14, 16] without the need of running the

complex climate model in each individual case, often a computational problem of

overwhelming complexity. With these interesting possibilities for FDT, Leith’s

suggestion inspired a first wave of systematic research [6, 7, 29, 17, 13, 15, 14, 16]

for various idealized climate models for the mean response to changes in exter-

nal forcing. All of this work utilizes the quasi-Gaussian approximation (qG-

FDT) suggested by Leith [21, 23, 4]. Recently, mathematical theory for FDT

[23, 27, 25, 22] has supplied important generalizations and new ways to interpret

FDT. These developments have lead to improved theoretical understanding of

the qG-FDT algorithm, new applications of qG-FDT beyond the mean response

with significant skill [16] and new computational algorithms beyond qG-FDT
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with improved high skill for both the mean and variance of low frequency re-

sponse which have been tested in a variety of models [2, 3, 4]. There is also recent

mathematical theory for identifying the “most dangerous” perturbations in a

given class [23, 27]. The above work on algorithms for FDT in climate change

science is for forced dissipative large dimensional dynamical systems. Thus, the

attractor is a fractal object, typically, but the presence of large dimensional

unstable manifolds helps FDT algorithms (see [28, 8]) to overcome this lack of

smoothness for these high dimensional systems. Furthermore, the short-time

FDT algorithms developed in [2, 3, 4] work for systems without any smooth-

ness on the attractor. However, most of the theories and algorithms developed

for FDT assume a stationary climate, which excludes the study of important

practical issues of climate change science involving time-periodic statistics such

as the diurnal or seasonal cycle.

Very recently generalizations of FDT to time-dependent ensembles were de-

veloped by Majda and Wang [27]. As a special case of more general results

in their paper, Majda and Wang developed the FDT for time-periodic systems

as well as approximate algorithms for climate response with a seasonal cycle.

In particular, a quasi-Gaussian algorithm for computing FDT response of a

stochastic system with time-periodic invariant measure was proposed in [27]. In

a time-periodic setting, the FDT helps to answer such practical questions as how

will the time averaged monthly, seasonal, or yearly mean or variance of certain

physical variables change if the external forcing is perturbed. For example, one

can be interested in how much the averaged temperature in the month of April

will change if the forcing becomes stronger in the month of January.

In this paper, we propose a simple yet very rich triad test model with both

periodic deterministic forcing and stochastic forcing as a test bed for time pe-

riodic FDT. This model has already been introduced and used by the authors

in applications to filtering problems with multiple time scales [11, 12]. The

presence of noise makes the attractor smooth and there is a general rigorous

justification of FDT in this context [18]. The mathematical formulation of FDT

as linear response theory for forced dissipative stochastic dynamical systems is
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an appropriate setting for these applications since many current improvements

in the comprehensive computer models for climate change involve stochastic

components [30], while lower dimensional reduced models typically also involve

stochastic noise terms [24, 22, 25].

The key properties of the test model which make it very attractive for testing

FDT are

• its exactly solvable structure, i.e., mean, variance and in principle any

higher order moments can be computed analytically, therefore, the full

ideal response to external perturbations can be found exactly; further-

more, the qG-FDT algorithm can be applied and tested because it re-

quires knowledge of the time-periodic mean and covariance statistics of

the unperturbed climate,

• natural time-periodic forcing to study the performance of FDT on the

systems with seasonal cycle,

• nonlinear dynamics which provides an opportunity to study both Gaus-

sian and non-Gaussian regimes with the quasi-Gaussian approximation of

FDT.

The model is a triad nonlinear stochastic model consisting of one real mode, u1,

and one complex mode, u2, that interacts with u1 through catalytic nonlinear

coupling

du1

dt
= −γ1u1 + f1(t) + σ1Ẇ1, (1)

du2

dt
= (−γ2 + i(ω0 + a0u1))u2 + f2(t) + σ2Ẇ2, (2)

where f1(t) and f2(t) are periodic functions of time with the same period T0,

which represents the annual cycle, γ1, γ2, σ1, and σ2 are dissipation and stochas-

tic forcing coefficients that represent the interaction of the triad system with

other unresolved modes, ω0 is deterministic part of the frequency for the com-

plex mode, u2, and a0 is the coefficient measuring nonlinearity. In [11, 12] the

authors demonstrated how to use the special structure of the nonlinearity to find

4



analytical formulas for the first and second order statistics of system (1), (2).

Here, we use the long time limit of those analytical formulas in order to find

statistics in a time-periodic statistical equilibrium. Then, these first and second

order statistics can be used for computing

• the “ideal” mean and variance response of the system to the perturbations

of external forcing and dissipation,

• the quasi-Gaussian approximation of FDT, which requires the knowledge

of mean and covariance statistics of the unperturbed climate.

The test model (1), (2) is motivated by the interaction of a barotropic or baro-

clinic Rossby wave on a sphere represented by mode the u2 with Rossby fre-

quency ω0 with a strong zonal wind represented by mode u1. A special solution

to a model similar to system (1), (2) was given in [26] but for the system without

stochastic forcing. The forcing f1(t) represents the direct forcing of the zonal

jet from the polar temperature gradient. On the other hand, f2(t) models the

forcing of Rossby waves due to baroclinic moist processes or sea surface temper-

ature. Naturally, both of these components of external forcing have a seasonal

cycle. The advection of the Rossby wave by the zonal jet is modeled by the

nonlinear term with coupling coefficient a0. By varying the parameters of the

test model we can mimic different scenarios with various ratios of the energies

of u1 and u2, various characteristic time scales of these modes compared to the

seasonal cycle T0, various Rossby wave frequencies when compared with the

seasonal cycle (external forcing) frequency, and also various strengths of nonlin-

earity. By varying the nonlinearity strength, a0, we can control the departure

of the system statistics from the Gaussian state. As in climate science, we call

the period [0, T0] a “year” that consists of four equal “seasons” and each season

is divided into three equal “months”.

We compute the the time-averaged mean response to the changes in forcing

and variance response to the changes in dissipation using qG-FDT algorithms.

Then, we compare these qG-FDT responses that are given by the linear op-

erators with the corresponding ideal response operators that can be computed
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using exactly solvable statistics. We choose a number of test-cases with various

types of system behavior to test the skill of the qG-FDT algorithm for the triad

test model (35), (36). We will start by studying near-Gaussian regime where

the skill of qG-FDT is very high. Then, we will consider an interesting test-case,

when the statistics averaged over a certain month or over a full year are near-

Gaussian, while the averages over a specific season are strongly non-Gaussian.

In a near-Gaussian regime, we expect high skill of the quasi-Gaussian approxi-

mation of FDT whereas the strongly non-Gaussian regime is a tough test case

for quasi-Gaussian approximation and its skill can deteriorate. Moreover, we

will study both resonant and non-resonant situations, when the Rossby wave

frequency, ω0 is either equal or different from the external forcing frequency. We

will find that even though in the resonant case, the system becomes strongly

nonlinear and non-Gaussian, the skill of qG-FDT for the mean response to the

changes in forcing is surprisingly high and comparable to the skill of qG-FDT

in the non-resonant and more Gaussian regimes. On the other hand, the skill

of qG-FDT for the variance response to the changes of dissipation deteriorates

significantly as the nonlinearity increases.

The rest of the paper is organized as follows. In Section 2, we briefly summa-

rize the general theory for time dependent FDT. In Section 3, we give a detailed

discussion of the triad model (1), (2), its solution and time-periodic equilib-

rium mean and covariance. There, we also demonstrate how to use the exactly

solvable mean and covariance in order to find the ideal mean and variance re-

sponse to the changes in forcing and dissipation. In Section 4, we compute

quasi-Gaussian approximation to the mean and variance response of the triad

system (1), (2) to the perturbations of forcing or dissipation. In Section 5, we

present the results of our study of the skill of the qG-FDT for the triad system.

Finally, in Section 6, we summarize the results of the paper and discuss future

work.
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2. Theory for time-periodic FDT

In this Section, we briefly summarize the theory for the time-dependent FDT

in a time-periodic statistical steady state. A much more extensive discussion

of the subject can be found in [27]. Consider a generic well-posed system of

Stochastic Differential Equations (SDE) in the Ito form

du

dt
= F (u, t) + σ(u, t)Ẇ (t), (3)

where u ∈ R
N , F ∈ R

N , Ẇ is M -dimensional white noise in time, and σ is an

N ×M matrix. We assume that both F (u, t) and σ(u, t) are periodic functions

of time with the same period T0, i.e.,

F (u, t+ T0) = F (u, t),

σ(u, t+ T0) = σ(u, t).

Equation (3) models the motion of some physical system. Because of the time-

dependent forcing and noise, system (3) does not reach any time-independent

statistical equilibrium. However, we can consider time-dependent statistical

equilibrium of this system. Of course, even the time-dependent statistical equi-

librium may not exist for an arbitrary system (3). However, if the system is dis-

sipative in certain appropriate sense the existence of the statistical equilibrium

can be established ([27] and references therein). In particular, we assume that

the time-periodic equilibrium is described by the time-periodic pdf, peq(u, s),

with peq(u, s+ T0) = peq(u, s) which satisfies the Fokker-Planck equation

−
∂peq

∂s
−∇u · (peqF ) +

1

2
∇u · ∇u(σσT peq) = 0. (4)

Naturally, two types of averaging arise

• phase average: for any function G(u, s), we have

〈G(u, s)〉(s) =

∫

G(u, s)peq(u, s)du, (5)

• time average: for any periodic function f(s)

〈f(s)〉T0
=

1

T0

∫ T0

0

f(s)ds. (6)
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The combined average over both phase space and time is defined as

〈̃G(u, s)〉̃ = 〈〈G(u, s)〉〉T0
. (7)

Note that with such averaging, peq(u, s) becomes a probability measure on the

space R
N × S

1

1

T0

∫ T0

0

∫

peq(u, s)duds = 1. (8)

Suppose, we are interested in how the mean of some nonlinear functional,

Â(u, s), changes when a small perturbation is applied to the forcing F (u, t). We

consider the perturbations of the general type

δF (u, t) = a(u, s)δf(t), (9)

where a(u, s) is time-periodic vector function, f(t) is some scalar function of

time, and δ is a small parameter. Then the time-periodic FDT states [27] that

the finite time response of the mean of the nonlinear functional Â(u, s) after

time t is given by

δ〈̃Â(u, s)̃〉 =

∫ t

0

R(t− t′)δf(t′)dt′, (10)

where the response operator is computed via

R(t) = 〈̃Â(u(t+ s), t+ s) ⊗BF (u(s), s)〉̃, (11)

and u(t) is the solution of the phase-shifted dynamical equation

du

dt
= F (u, t+ s) + σ(u, t+ s)Ẇ , (12)

with the initial condition given as the value of the trajectory at time s

u|t=0 = u(s). (13)

The functional BF (u, s) in (11) has the explicit form

BF (u, s) = −
∇u(a(u, s)peq(u, s))

peq(u, s)
. (14)
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The infinite time response of the system to the time-independent perturbation

with a constant change in forcing, δf(t) = const, is given by the linear relation-

ship

δ〈̃A(u, s)〉̃ = Rδf, (15)

where the response operator has the form

R =

∫ ∞

0

R(t)dt. (16)

The exact pdf, peq , is often not known for most nonlinear systems; therefore,

some approximation of peq is needed [23, 27, 25]. The simplest approximation

is to use the Gaussian pdf, pG
eq(u, s), with the same mean and covariance as

in the original system [21, 14, 16, 2, 3, 4, 23, 27, 25]. This approximation is

called the quasi-Gaussian approximation for FDT (qG-FDT). The correspond-

ing functional BG
F becomes

BG
F (u, s) = −

∇u(a(u, s)pG
eq(u, s))

pG
eq(u, s)

, (17)

and the the quasi-Gaussian approximation to the response function (11) is given

by

RG(t) = 〈̃Â(u(t+ s), t+ s) ⊗BG
F (u(s), s)〉̃, (18)

while the corresponding infinite time response operator becomes

RG =

∫ ∞

0

RG(t)dt. (19)

If the mean and the variance of the time-periodic statistical equilibrium solution

of (3) is known the functional in (17) can be computed analytically for a given

perturbation (9). In Section 4, we will compute the functional BG
F for the test

model (1), (2) using exactly solvable first and second order statistics of this

model.

Next, we present a few examples of the nonlinear functionals and perturba-

tions. Very general nonlinear functionals have the separable form

Â(u, s) = A(u)φ(s), (20)
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where φ(s) is periodic with period T0. For the response of the mean of u, we

choose

[A(u)]j = uj , (21)

while for the response of the variance, we take

[A(u)]j = (uj − 〈uj〉)
2. (22)

Substituting (20) into (11) and using the change of variables s′ = s + t, we

rewrite (11) as

R(t) =
1

T0

∫ T0

0

φ(t + s)〈A(u(t+ s)) ⊗BF (u(s), s)〉

=
1

T0

∫ T0+t

t

φ(s′)〈A(u(s′)) ⊗BF (u(s′ − t), s′ − t)〉ds′

by periodicity

=
1

T0

∫ T0

0

φ(s′)〈A(u(s′)) ⊗ BF (u(s′ − t), s′ − t)〉ds′. (23)

Suppose we would like to know the response of the time averaged mean or

variance over a part of the period [0, T0], say over [t1, t2] ⊂ [0, T0]. Practically,

this becomes useful when monthly, seasonal, or annual averages of mean or

variance are of interest. Then, the choice of φ(s) is the normalized indicator

function of the segment [t1, t2]

φ(s) =
T0

t2 − t1
χt1,t2(s), (24)

where

χt1,t2(s) =











1, for s/mod(T0) ∈ [t1, t2],

0, otherwise.

(25)

Note that as defined χt1,t2 is a periodic function of s ∈ R
1. For the special

choice of φ(s) given in (24), the response function in (23) becomes

R(t) =
1

t2 − t1

∫ t2

t1

〈A(u(s)) ⊗BF (u(s− t), s− t)〉ds, (26)

and the quasi-Gaussian approximation of R(t) is

RG(t) =
1

t2 − t1

∫ t2

t1

〈A(u(s)) ⊗BG
F (u(s− t), s− t)〉ds. (27)
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Next, we discuss two types of perturbations that we are going to study in

this paper: perturbations of forcing and perturbations of linear dissipation. Per-

turbations of forcing are described by (9) with a(u, s) = 1 and the components

of the corresponding functional Bf becomes

[Bf ]k = −
∇uk

peq(u, s)

peq(u, s)
. (28)

On the other hand, the perturbations of dissipation are given by a(u, s) = −u

with the functional Bd given by its components

[Bd]k =
∇uk

(ukpeq(u, s))

peq(u, s)
. (29)

In the quasi-Gaussian approximation, we use the Gaussian pdf, pG
eq , instead of

the original pdf, peq

[BG
f ]k = −

∇uk
pG

eq(u, s)

pG
eq(u, s)

, (30)

and

[BG
d ]k =

∇uk
(ukp

G
eq(u, s))

pG
eq(u, s)

. (31)

Now following [27], we discuss practical implementation of (11) or its special

case (26) for a given dynamical system (3). In (26) or (27) we use the ergodicity

of system (3) and substitute the phase average by the time average over a long

time trajectory in a time-periodic equilibrium regime. In order to approximate

the probability distribution over the period [0, T0], we discretize this period

with L equal bins centered at points sj . Then, the response function (11) can

be approximated by

R(t) ≈
1

LT

L
∑

j=1

∫ T∗+T

T∗

Â(u(t+ sj + τ), t+ sj + τ) ⊗BF (u(sj + τ), sj + τ)dτ, (32)

where T � 1, and T ∗ is large enough so that the system (3) has reached

time-dependent equilibrium at this time T ∗. Also, we always use L = 12 cor-

responding to a monthly partition. Below, we will test the quasi-Gaussian

approximation of the time-periodic FDT on the triad model (1), (2).
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It is worth remarking here that there are general moment constraints in the

time-periodic statistical equilibrium. These constraints allow one to find some

higher order statistics recursively knowing the lower order statistics. Then, the

response of these higher order statistics to the changes in forcing or dissipation

can be found automatically once the response of the lower order statistics is

found. Consider a general functional G(u, s) which is periodic in s with the

period T0. Then, we find

˜〈∂G

∂s

˜〉
=

1

T0

∫ ∫

∂

∂s
(G(u, s))peq(s)duds = −

1

T0

∫ ∫

G(u, s)
∂

∂s
peq(s)dsdu

=
1

T0

∫ ∫

G(u, s)
(

∇(Fpeq) −
1

2
∇∇(Qpeq)

)

duds = −
˜〈
F∇G

˜〉
−

1

2

˜〈
σσT∇∇G

˜〉

(33)

To illustrate the simplest moment constraints, consider G(u, s) = G0(u) so

that (33) becomes the moment constraints

〈̃F∇G0 〉̃ +
1

2
〈̃σσT∇∇G0 〉̃ = 0. (34)

Below in Eqs. (56)-(59) of Section 3, we will use constraint (34) to find the

annual-averaged third order moment that has an important physical meaning

for the system (1), (2) — it represents the energy transfer among the modes.

3. Exactly solvable triad model

As we introduced earlier in (1), (2) the model that we use here for test-

ing time-periodic FDT is a stochastic triad nonlinear model with time-periodic

deterministic forcing

du1

dt
= −γ1u1 + f1(t) + σ1Ẇ1, (35)

du2

dt
= (−γ2 + i(ω0 + a0u1))u2 + f2(t) + σ2Ẇ2, (36)

where u1 is real mode and u2 is a complex mode. In Eqs. (35) and (36),

the parameters γ1 and γ2 represent linear dissipation and σ1 and σ2 repre-

sent stochastic forcing. Also, ω0 is the deterministic linear frequency of u2 and
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a0 characterizes the strength of nonlinear coupling of u2 with u1. We choose

periodic forcings f1(t) and f2(t) with the same period T0 which represents sea-

sonal cycle. As we discussed in the introduction, we call the period [0, T0] a

“year” as in climate science. Naturally, we divide the year into four seasons

with each season consisting of three months. System (35), (36) was studied by

the authors in [11, 12] in a context of filtering. There, it was shown that there

exist analytical formulas for the first and second order statistics of u1 and u2.

Here, we will use those formulas to compute the exact “ideal” response of the

mean and the variance of the system (35), (36) to the perturbations of forcing

or dissipation. We are interested in the infinite time response of the system, i.e.,

we measure the statistics of the system after infinite time has passed since the

perturbation was applied. Practically, the relaxation time which is much longer

than the system decorrelation time has to pass before the response of the system

is measured. Moreover, the time-periodic equilibrium mean and covariance will

be used to construct quasi-Gaussian approximation of FDT. The ideal response

will be used as a benchmark for the qG-FDT response.

We show how to compute the mean and the variance of u1 and u2 by fol-

lowing [11, 12]. The solution of Eq. (35) is given by

u1(t) = u10e
−γ1(t−t0) +

∫ t

t0

f1(s)e
−γ1(t−s)ds+ σ1

∫ t

t0

e−γ1(t−s)dW1(s),(37)

where u10 is the initial condition at t = t0. Now it is easy to find the mean and

the variance of u1. The mean is given by

〈u1(t)〉 = 〈u10〉e
−γ1(t−t0) +

∫ t

t0

f1(s)e
−γ1(t−s)ds, (38)

The statistics in the time-periodic equilibrium can be found by sending t0 to

minus infinity, which is equivalent to allowing an infinitely long time to pass after

the initial condition is imposed. Then, the time-periodic equilibrium mean of

u1 is given by

〈u1(t)〉eq =

∫ t

−∞

f1(s)e
−γ1(t−s)ds, (39)

Similarly, the variance of u1 at time t with initial condition given at time t0
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becomes

V ar(u1(t)) = V ar(u10)e
−γ1(t−t0) +

σ2
1

2γ1
(1 − e−γ1(t−t0)). (40)

The equilibrium variance becomes

V areq(u1) =
σ2

1

2γ1
. (41)

Note that u1(t) is Gaussian and, therefore, it is fully defined by its mean and

variance.

Now, we find the mean and the covariance of the second mode, u2. The

solution of Eq. (36) with initial condition at time t0 is given by

u2(t) = e−γ2(t−t0)ψ(t0, t)u20 +

∫ t

t0

e−γ2(t−s)ψ(s, t)f2(s)ds+ σ2

∫ t

t0

e−γ2(t−s)ψ(s, t)dW2(s), (42)

where as in [11, 12], we define new functions

ψ(s, t) = eiJ(s,t), (43)

J(s, t) =

∫ t

s

(

ω0 + a0u1(s
′)
)

ds′ = (t− s)ω0 + a0

∫ t

s

u1(s
′)ds′ (44)

= JD(s, t) + JW (s, t) + b(s, t)u10,

where the deterministic part of J(s, t) is

JD(s, t) = (t− s)ω0 + a0

∫ t

s

∫ s′

t0

f1(s
′′)e−γ1(s

′−s′′)ds′ds′′,

the noisy part of J(s, t) is

JW (s, t) = σ1a0

∫ t

s

ds′
∫ s′

t0

eγ1(s
′′−s′)dW1(s

′′),

and the prefactor of u10 is

b(s, t) =
a0

γ1

(

e−γ1(s−t0) − e−γ1(t−t0)
)

.

The mean of u2 is given by

〈u2(t)〉 = e−γ2(t−t0)〈ψ(t0, t)u20〉 +

∫ t

t0

e−γ2(t−s)〈ψ(s, t)〉f2(s)ds. (45)
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In the time-periodic equilibrium state the mean of u2 becomes

〈u2(t)〉eq =

∫ t

−∞

e−γ2(t−s)〈ψ(s, t)〉eqf2(s)ds. (46)

Note that J(s, t) is Gaussian since it is an integral of the Gaussian variable u1

plus a deterministic function as can be seen from (44). Therefore, 〈ψ(s, t)〉eq is

by definition a characteristic function of a Gaussian random variable, which has

the explicit form

〈ψ(s, t)〉eq = 〈eiJ(s,t)〉eq = ei〈J(s,t)〉eq−
1
2

V areq(J(s,t)). (47)

The mean and the variance of J(s, t) were computed in [11, 12] and here we use

those formulas

〈J(s, t)〉eq = (t− s)ω0 + a0

∫ t

s

ds′
∫ s′

−∞

f1(s
′′)e−γ1(s

′−s′′)ds′′, (48)

and

V areq(J(s, t)) =
σ2

1a
2
0

γ3
1

(

e−γ1|t−s| + γ1|t− s| − 1
)

, (49)

where again we used t0 → −∞ as initial time to find time-periodic equilibrium

statistics. Similarly, we can find Coveq(u2, u1), V areq(u2), and Coveq(u2, u
∗
2).

We put these computations in the Appendix.

Although expressions (46) and (77), (73), (74) are analytical and explicit,

the integrals still have to be computed using numerical quadrature. Exponential

decay of the integrands in (46), (77), (73), (74) suggests that we change variables

in order to replace the computation of the integrals over a semi-infinite interval

(−∞, t] with the computation of the integrals over a finite interval [0, 1]. We

define

q ≡ e−γ2(t−s), (50)

which gives

s = t+
1

γ2
log(q). (51)
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Then, Eq. (46) becomes

〈u2(t)〉eq =
1

γ2

∫ 1

0

〈ψ(s(q), t)〉eqf2(s(q))dq. (52)

The same approach is used in computing the cross-covariance Cov(u2, u1) given

by (77). Similarly, we deal with the double integrals for the second order statis-

tics in (73), and (74). The change of variables (51) is equivalent to using a

non-uniform (logarithmic) mesh in the quadrature for the original variables.

Next, we apply the trapezoidal rule. We partition the interval [0, 1] with points

qj such that

0 = q0 < q1 < · · · < qK = 1, (53)

with a small uniform step ∆q = qj+1 − qj . Then, the integral of any function

g(q) over the interval [0, 1] is approximated according to

∫ 1

0

g(q)dq ≈
∆q

2
(g(q0) + g(qK)) + ∆q

K−1
∑

j=1

g(qj). (54)

Note that in all our examples, the integrand g(q) vanishes for q = 0 because

of the exponential decay to zero of 〈ψ(s, t)〉 as s → −∞ (which is equivalent

to q → 0). It is convenient to introduce real variables of the triad system (35)

and (36)

u =











x1

x2

x3











≡











u1

Re[u2]

Im[u2]











. (55)

In Fig. 1, we compare the first and second order statistics of the triad (55),

computed in this Section analytically with the corresponding results of Monte-

Carlo ensemble averaging. The conversion formulas for the statistics of the real

triad (55) from the statistics of the complex system (u1, u2) are given in the

Appendix. Here, we used the parameter set given in the second row of Table 1

(this Table will be discussed below in Section 5). The Monte-Carlo averaging

was done using a very long trajectory (36 years) computed via Eqs. (37), (42).

We used a time step h = 10−3 to approximate the integrals in (46) and in (77),
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(73), (74). Note that throughout paper the time is measured in either years or

months here, where 1 year is equal to 2.4 time units in terms of the coefficients

given in Table 1 and 1 month is 1/12-th of the year.

We note excellent agreement between the analytical formulas and the results

of Monte-Carlo averaging shown in Fig. 1. Moreover, in Fig. 1, we demonstrate

the skewness and flatness of the nonlinear variable x2 computed using Monte-

Carlo averaging. We note a large burst of non-Gaussianity in the third season

of the annual cycle.

Next, we apply Eq. (34) to compute the annual-averaged third order mo-

ment 〈̃x1x2x3 〉̃ that represents the simultaneous energy transfer among the three

modes of the system (35), (36) by utilizing combination of the first and second

order moments. For any functional G0(u), Eq. (34) becomes

˜〈
(−γ1x1 + f1(t))

∂G0

∂x1

˜〉
+

˜〈
(−γ2x2 − ω0x3 − a0x1x3 +Re[f2](t))

∂G0

∂x2

˜〉

+
˜〈
(−γ2x3 + ω0x2 + a0x1x2 + Im[f2](t))

∂G0

∂x3

˜〉

+
1

2

˜〈
diag[σ2

1 , σ
2
2/2, σ

2
2/2]∇u · ∇uG0(u, t)

˜〉
= 0, (56)

where diag[·] is a diagonal matrix with the given elements. Let us apply this

equation to some specific functionals. For G0 = x2
3 we find

〈̃x1x2x3 〉̃ =
1

a0

(

γ2 〈̃x
2
3 〉̃ − ω0〈̃x2x3 〉̃ − 〈̃Im[f2](t)x3 〉̃ −

σ2
2

4

)

. (57)

Similarly, for G = x2
2 we have

〈̃x1x2x3 〉̃ =
1

a0

(

− γ2〈̃x
2
2 〉̃ − ω0〈̃x2x3 〉̃ + 〈̃Re[f2](t)x2 〉̃ +

σ2
2

4

)

. (58)

We add these two expressions to find

〈̃x1x2x3 〉̃ =
1

a0

(

−
γ2

2
(̃〈x2

3 〉̃ − 〈̃x2
2〉̃) − ω0〈̃x2x3 〉̃ +

1

2
(̃〈Re[f2](t)x2 〉̃ − 〈̃Im[f2](t)x3 〉̃

)

. (59)

Note that, the right hand side of Eq. (59) contains only the first and the second

order statistics which can be computed as discussed above. The annual-averaged

triple-correlator 〈̃x1x2x3〉̃ is an important physical quantity that measures the

energy exchange among all three modes simultaneously, which characterizes the

nonlinear wave coupling.
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The analytical formulas for the first and second order statistics can be ap-

plied to the computation of the ideal response of the triad system to the external

perturbation. In particular, in this paper we will be studying the mean response

to the changes in forcing and the variance response to the changes in dissipation.

The ideal response is the actual linear response to the perturbation and here

we know it explicitly for the mean and variance unlike the extensive numerical

calcualtion for this response required for other systems ([23, 22, 14, 16]). The

ideal response operator computed below will be used as a benchmark for the

corresponding qG-FDT response operators that are discussed in Section 4. We

start with the ideal mean response to the change in forcing. For simplicity, we

drop the subscript “eq” in our notation assuming that all averages are done in

the time-periodic statistical equilibrium. We define the real forcing vector

f =











fx1

fx2

fx3











(60)

The ideal mean response to the changes in forcing is give by the matrix

Rid
M,f =











∂〈̃x1〉̃
∂fx1

∂〈̃x1〉̃
∂fx2

∂〈̃x1〉̃
∂fx3

∂〈̃x2〉̃
∂fx1

∂〈̃x2〉̃
∂fx2

∂〈̃x2〉̃
∂fx3

∂〈̃x3〉̃
∂fx1

∂〈̃x3〉̃
∂fx2

∂〈̃x3〉̃
∂fx3











. (61)
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Using Eqs. (39) and (46), we find

∂ 〈̃x1 〉̃

∂fx1

=
1

γ1
,

∂ 〈̃x1 〉̃

∂fx2

= 0,

∂ 〈̃x1 〉̃

∂fx3

= 0,

∂ 〈̃x2 〉̃

∂fx1

= −
a0

γ1(t2 − t1)
Im

∫ t2

t1

∫ t

−∞

e−γ2(t−s)〈ψ(s, t)〉(t− s)f2(s)dsdt,

∂ 〈̃x3 〉̃

∂fx1

=
a0

γ1(t2 − t1)
Re

∫ t2

t1

∫ t

−∞

e−γ2(t−s)〈ψ(s, t)〉(t− s)f2(s)dsdt,

∂ 〈̃x2 〉̃

∂fx2

=
∂ 〈̃x3 〉̃

∂fx3

=
1

t2 − t1
Re

∫ t2

t1

∫ t

−∞

e−γ2(t−s)〈ψ(s, t)〉dsdt,

∂ 〈̃x2 〉̃

∂fx3

= −
∂ 〈̃x3 〉̃

∂fx2

= −
1

t2 − t1
Im

∫ t2

t1

∫ t

−∞

e−γ2(t−s)〈ψ(s, t)〉dsdt.

In the Appendix, we show how to find the ideal operator for the variance re-

sponse to the changes in external forcing, Rid
V,f , and dissipation, Rid

V,d.

4. Quasi-Gaussian approximation of FDT for the triad system

In Section 2, we briefly provided a general theory for the time-periodic FDT.

There, we obtained the expression for the FDT response operator given by

Eq. (11). However, if the time-periodic equilibrium pdf, peq , is not known

as happens in most practical approximations, the quasi-Gaussian approxima-

tion (18) to the response operator is computed using the Gaussian pdf, pG
eq with

the same mean and covariance as the original system.

Here, we compute the qG-FDT response operator, RG, for the triad model (55)

for the time-averaged mean and variance response to the changes of forcing or

dissipation. We will be using different averaging windows that correspond to

the first month, the third season, and the full year with formulas as developed

in (24)-(27).

For the mean response, the corresponding functional A(u) in (27) has the
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form

AM (u) =











x1

x2

x3











, (62)

and for the variance response

AV (u) =











(x1 − 〈x1〉)
2

(x2 − 〈x2〉)
2

(x3 − 〈x3〉)
2











. (63)

Now, we compute the functional BG
F using (30) and (31) for the perturbations

of forcing and dissipation, respectively. Note that the Gaussian pdf, pG
eq , with

the same mean and variance as the solution of the original system (35) and (36)

in time-periodic equilibrium is computed analytically using analytical formulas

for the first and second order statistics of (35) and (36) obtained in Section 3

pG(u, s) =
1

√

(2π)3|Σ|
exp

(

−
1

2
(u− 〈u〉)T Σ−1(u− 〈u〉)

)

, (64)

where, the mean, 〈u〉, and the covariance matrix, Σ, of the triad system are

computed in the Appendix. For the perturbations of forcing we use (30) and (64)

to find

[BG
f (u)]k = yk ≡ [Σ−1(u− 〈u〉)]k . (65)

Then, the quasi-Gaussian approximation (18) of the mean response function to

the changes of forcing is given by the matrix with the elements

[RG
M,f ]jk(t) =

1

t2 − t1

∫ t2

t1

〈AM,j(u(s))B
G
f,k(u(s− t), s− t)〉ds

=
1

t2 − t1

∫ t2

t1

〈xj(s)yk(s− t)〉ds. (66)

Next, we consider perturbations of dissipation by combining (31) and (64)

[BG
d (u)]k = 1 − xk [Σ−1(u− 〈u〉)]k = 1 − xkyk. (67)
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Then, the quasi-Gaussian approximation (18) of the mean response operator to

the changes of dissipation is given by the matrix with the elements

[RG
M,d]jk(t) =

1

t2 − t1

∫ t2

t1

〈xj(s)(1 − xk(s− t)yk(s− t))〉ds. (68)

Similarly, we find the variance response to changes in forcing

[RG
V,f ]jk(t) =

1

t2 − t1

∫ t2

t1

〈(xj(s) − 〈xj(s)〉)
2yk(s− t)〉ds, (69)

and in dissipation

[RG
V,d]jk(t) =

1

t2 − t1

∫ t2

t1

〈(xj(s) − 〈xj(s)〉)
2(1 − xk(s− t)yk(s− t))〉ds. (70)

The infinite time response operator, RG, is computed from the response func-

tions, RG(t), via Eq. (19). We note that the quasi-Gaussian response function

for the mean to the change of forcing, RG
M,f (t), is basically the second order two-

time correlation function, for the mean to the changes in dissipation, RG
V,f (t),

and the variance to the changes in forcing, RG
M,d(t), are the third order two-time

correlation function, and the variance to the changes in dissipation, RG
V,d(t), is

the fourth order two-point correlation function. Moreover, the odd-order cen-

tered statistics of Gaussian random variables vanish [10], and hence, for the

near-Gaussian regimes, the mean response to the perturbations of dissipation

and variance response to the perturbations of forcing do not deviate from zero

significantly. Therefore, in our study we will concentrate on the mean response

to the perturbations of forcing and variance response to the perturbations of

dissipation.

If we assume that the perturbations of forcing, δf , or perturbations of dissi-

pation, δγ, have three independent components, δfj or δγj , that correspond to

each of the variables xj then the corresponding response operators, R are 3× 3

constant coefficient matrices. However, while this assumption of independence

of perturbation components is valid for the perturbations of forcing, it is not

true for the perturbations of dissipation because we only have two dissipation

parameters, γ1 and γ2. As we show in the Appendix, the variance response to

the changes in dissipation is described by a 3 × 2 constant coefficient matrix.
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In order to find the corresponding qG-FDT response operator, we equate the

perturbations of dissipation for the second and the third components of the

triad (55), x2 and x3. This is equivalent to adding the second and the third

columns of the qG-FDT response matrix that is obtained under the assump-

tion of independence of all three perturbation components. Then, the qG-FDT

variance response to the changes in dissipation is described by a 3× 2 constant

coefficient matrix.

5. Skill of the quasi-Gaussian FDT on the test model

In this Section, we study the skill of the qG-FDT response for the triad

system (35), (36) in comparison with the ideal response. Here, the terminology

skill refers to the capability of the quasi-Gaussian FDT approximation to re-

produce the exact ideal response reported for example below (61) for the mean.

We have chosen a number of different parameter regimes presented in Table 1

for our tests. As the first test-case, we consider a near-Gaussian regime which

is the most obvious for testing qG-FDT because the qG-FDT provides an exact

ideal response when it is applied to Gaussian systems. As the second test-case,

we used the regime when the system (35) and (36) has near-Gaussian statistics

over the whole year except for the third season, when the pdf deviates from

Gaussian significantly. In this regime we expect deteriorating skill for qG-FDT

when the time averaging of the statistics is done over this non-Gaussian season.

Otherwise, we still anticipate high skill of qG-FDT. In the first two cases, we

compared the qG-FDT and ideal mean responses to the changes of forcing. For

the third test-case, we use a series of simulations for the triad system with a

systematically increasing nonlinearity with a forcing that is non-resonant. In

this case, we expect qG-FDT to lose skill as the nonlinearity increases and the

system becomes more non-Gaussian. Finally, the fourth test case is the same

as the third one but with the resonant forcing. Here, the resonant forcing am-

plifies the statistics of the model and hence the model has large variance and

becomes strongly non-Gaussian and, therefore, the qG-FDT is not expected to
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have much skill as nonlinearity increases. In the third and fourth test cases we

compare the mean response to the changes of forcing and the variance response

to the changes of dissipation. Below we provide a detailed explanation of the

testing procedure presented for the first test case with the near-Gaussian regime.

For the remaining test cases we use the same methodology and only discuss the

results of our study.

5.1. qG-FDT response in the near-Gaussian regime

The first test-case represented in Table 1 is characterized by weak damping,

weak white noise forcing and weak deterministic forcing of the nonlinear mode,

u2. This regime is very close to Gaussian and the quasi-Gaussian approximation

to FDT is expected to perform well here.

We compare the mean qG-FDT response to the changes in forcing with

the corresponding ideal response in this near-Gaussian regime. As discussed in

Section 3, we utilize the analytical formulas (39) and (46) of the time-periodic

equilibrium mean to find the ideal mean response of the system (35), (36) to the

perturbations of forcing. We use three types of time averaging, i.e., monthly

average over the first month (t1 = 0 and t2 = T0/12 in Eq. (24)), seasonal

average over the third season (t1 = T0/2 and t2 = 3T0/4 in Eq. (24)), and

annual average (t1 = 0 and t2 = T0 in Eq. (24)). We construct the response

matrix following the procedure outlined in Section 3. These ideal response

operators along with their singular values are given in the upper left quarter of

Table 2.

Next, we test how well the qG-FDT predicts the ideal linear response.

The quasi-Gaussian approximation of the response operator, RG, is given by

Eq. (19). First, we have to compute the response function, RG
M,f (t), which

is given by Eq. (18) with the functional A from (62) and the functional B

from (30). The response function, RG
M,f (t), is a two-time correlation function

and we use the ergodicity of system (35), (36) to compute RG
M,f (t) averaging

over a long trajectory. We apply the computational algorithm “on the fly” as

described in [23] when the correlation function is computed in parallel with to
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the computation of the trajectory and thus a very long trajectory can be used

in order to achieve a very high precision.

In Fig. 2, we show, RG
M,f (t), for each of the components of the operator for

the mean to the changes in forcing. Here, we used a long trajectory of the length

3 · 106 oscillation periods (years). Next, following (19) we integrate, RG
M,f (t)

and obtain the components of the linear response matrix, RG
M,f , along with the

corresponding singular values given in the upper right quarter of Table 2.

We compare the ideal response matrix with the qG-FDT response matrix to

find excellent agreement as we expected for this near-Gaussian regime. More-

over, we note that annually averaged operators have the best agreement while

monthly averaged operators have the worst agreement among the three types

of time averaging. This can be explained by the fact that averaging over one

certain month requires a much longer trajectory than averaging over the whole

year for the same precision. To summarize, we have confirmed that the qG-FDT

gives excellent prediction of the mean response operator for the perturbations

of forcing for the system in a near-Gaussian regime.

5.2. qG-FDT response in the near-Gaussian regime with non-Gaussian season

The second test-case represented in Table 1 is characterized by stronger

damping of both modes and stronger white noise forcing of the first mode when

compared with the first test-case from Table 1. Moreover, in the second test-

case we have stronger forcing f2 of the nonlinear mode u2 which creates stronger

non-gaussianity in the statistics of u2. In Fig. 1, which we already studied in

Section 3, we demonstrate the statistics of the triad (55) for this test-case.

In Section 3, we used Fig. 1 to confirm that the analytically obtained first

and second order statistics coincide with the corresponding results of Monte-

Carlo averaging. Moreover, the skewness plot in Fig. 1 shows that the system

is in the near-Gaussian regime for most of the time except for the burst of

non-Gaussianity in the third season (between months 6 and 9). In Fig. 3, we

show the pdfs of x2 for our second test-case averaged over the first month,

the third season and the whole year. These pdfs were computed in the time-
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periodic equilibrium and rescaled to have mean zero and variance one. Note

that the pdfs here and throughout the rest of the paper are computed using

Monte Carlo binning with 80 bins at each time. The pdfs here are used for

qualitative demonstration the non-Gaussian properties of the system, on the

other hand, the quantitative analysis of the behavior of the qG-FDT algorithm is

performed using the exact analytical formulas for the ideal response as discussed

in Section 3. We note that the pdf of x2 averaged over the first month and over

the whole year are very close to Gaussian with the corresponding skewness −0.07

and 0.05, respectively. On the other hand, the pdf of x2 averaged over the third

season is significantly non-Gaussian with the skewness 0.57. The source of the

non-Gaussianity in the pdf for x2 can be traced to the triplr correlation for

anomalies, x′j = xj − 〈xj〉 for j = 1, 2, 3, i.e., 〈x′1x
′
1x

′
2〉; this triple correlation

vanishes identically for a Guassian random field. In Fig. 1, we plot the skewness

of x2 and the triple correlator, 〈x′1x
′
1x

′
2〉, as functions of time over one period.

As the reader can see by inspection, these two functionals are highly correlated

with pattern correlation 0.91. In the Appendix, we present the analytic formula

for 〈x′1x
′
1x

′
2〉.

Now, we compare the mean response to the perturbations of forcing, com-

puted using ideal and qG-FDT algorithms as discussed in Section 5.1. We refer

to the lower part of Table 2 now. On the left side, we see the ideal response

operator together with the corresponding singular values. Again, we used the

averaging over one month (the region, bounded by the dashed vertical lines in

the second panel in Fig. 1), over one season (the region, bounded by the dotted

vertical lines in the second panel in Fig. 1), and over one year (the whole pe-

riod). On the right side of the lower part of the Table 2, we show the qG-FDT

mean response operators to the changes of forcing along with the correspond-

ing singular values. We note that qG-FDT response operator approximates

the ideal response operator quite well when monthly and annual averages are

considered. As we mentioned above along these averaging segments, the triad

system’s statistics are near-Gaussian. However, the qG-FDT operator averaged

over the third season is significantly different from the corresponding ideal op-
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erator. In particular, we note the difference between the two smallest singular

values shown in bold in Table 2. This discrepancy is a consequence of strong

non-Gaussianity of the model in the third season.

To conclude the results for the second test-case, we have found that for the

system with near-Gaussian statistics, the qG-FDT yields a very good approxi-

mation of the ideal response operator, while in the non-Gaussian regime, there

is a discrepancy between the ideal and qG-FDT mean response to the changes

in forcing.

5.3. qG-FDT response with the near-resonant forcing

In this and the next Sections we study how the skill of the quasi-Gaussian

approximation of FDT changes as the system undergoes a transition from a

Gaussian to a non-Gaussian regime as the nonlinearity becomes stronger. In

this Section, we consider non-resonant regimes when the frequency of the forcing

ω = 2π/T0 is different from the frequency ω0 of the nonlinear mode u2. We

gradually increase the strength of the nonlinear coupling which is controlled by

the parameter a0 and study how much the skill of qG-FDT changes. Here, we

consider not only the mean response to the changes in forcing given by (19), (66)

but also the variance response to the changes in dissipation given by (19), (70).

The parameters for the third test-case are given in the third row of Table 1.

In Fig. 4, we show the evolution of the pdfs for the non-resonant case for

a0 = 0.5. The pdfs are shown at the beginning of each of the twelve months. We

note that the pdfs here are near-Gaussian by sight. We also note the floating

mean position roughly coincides with the position of the peaks of the pdfs. On

the other hand, the variance does not change much. In order to quantify non-

gaussianity, in Table 3, we show the dependence of skewness and flatness of the

triad model in a time-periodic equilibrium state as the nonlinearity parameter

a0 increases. We used monthly, seasonally, and annually averaged pdfs for

computing skewness and flatness. We note that in the regime with non-resonant

forcing, the system stays very close to Gaussian even for as high values of

nonlinear parameter as a0 = 0.5. Therefore, the qG-FDT should have high
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skill here. However, as we will see in Section 5.4 the situation changes with

resonant forcing when the system becomes strongly non-Gaussian even with

small values of the nonlinearity parameter a0.

To test the skill of the qG-FDT, we followed the procedure outlined in Sec-

tion 5.1, where we compared the ideal and qG-FDT response operators and

their singular values. Here, we only compare the singular values of the corre-

sponding operators. In Table 4, we demonstrate the singular values of the ideal

and qG-FDT operators for the time-averaged mean response to the changes

in forcing. We note that the corresponding singular values are very close to

each other for all values of a0. Moreover, the qG-FDT approximations to the

response operators for the monthly averaged mean have less skill than the re-

sponse operators averaged over one season, which in turn have less skill than

the operators for the annually averaged mean. As we mentioned in Section 5.1,

this is a consequence of the fact that we use the same trajectory to compute the

response operators for all three time averaged statistics, however, the averaging

over one month requires more data to achieve the same precision in the corre-

lation function than the average over one season or one year. Next, we consider

the variance response to the changes in dissipation. We compute the ideal vari-

ance response using Eqs. (83) from the Appendix. As discussed in Section 3,

the operator for the variance response to the changes in dissipation is of the

size 3 × 2 and, therefore, it has 2 singular values. When studying the variance

response to the changes in dissipation, we should keep in mind that the variance

in the non-resonant case is almost independent of time with just a small devia-

tions around its annually averaged value. These annual-averaged values of the

variance are given in Table 3 for different values of nonlinearity. We note that

the annual-averaged variance grows only a little as a0 increases. Below, in Ta-

ble 6 for the resonant forcing regime, we will observe a much more rapid growth

of the annual-averaged variance as a function of a0. In Table 5, we compare

the singular values of the ideal and qG-FDT variance response operators to the

changes in dissipation for different values of nonlinearity parameter a0 for the

case of non-resonant forcing. From Table 5, we learn that the skill qG-FDT ap-
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proximation of the variance response to the changes in dissipation deteriorates

as the strength of nonlinearity increases. In particular, we note that the larger

singular value is predicted with reasonable accuracy (with ∼ 5% error) only for

the nonlinear parameter values up to a0 = 0.3. Then, as a0 increases further,

the larger singular value of the qG-FDT operator is significantly larger than that

of the ideal operator. This discrepancy for large nonlinearity can be attributed

to the fact that the variance response function (70) is the fourth order two-time

correlation function, whereas, the quasi-Gaussian approximation is designed to

fit the first and the second one-time moments. On the other hand, the smaller

singular value is predicted quite well for all values of a0.

To summarize, we have tested the qG-FDT approximation of the mean re-

sponse to the changes in forcing and the variance response to the changes in

dissipation on the non-resonant forcing test-case. We have seen that the mean

response to the changes in forcing is predicted very well for a wide range of

nonlinearity parameter a0, whereas the variance response to the changes in dis-

sipation slightly deteriorates when the nonlinearity parameter exceeds certain

value.

5.4. qG-FDT response with the resonant forcing

Now, we study the test-case of resonant forcing with the parameters given

in the fourth row of Table 1. In Fig. 5, we demonstrate the monthly snapshots

of the evolution of the time-periodic pdf, p(x2, s), of the nonlinear variable x2

of the triad u given by (55). Figure 5 was produced in the strongly nonlinear

regime with a0 = 0.35. We note that the pdf in Fig. 5 has two peaks during

parts of the annual cycle. In Fig. 6, we show the time-averaged pdfs rescaled

to have mean zero and variance one for increasing values of a0 and for three

averaging periods over the first month, the third season, and the full year. We

compare these pdfs with the standard Gaussian distribution N(0, 1). We note

that monthly averages are more non-Gaussian than seasonal averages which, in

turn, are more non-Gaussian than annual averages. To monitor the departure

from Gaussian statistics, we measure corresponding skewness and flatness of
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x2 and present them in Table 6. Strong deviations of the system’s statistics

from Gaussian values show that this is a very tough test case for the qG-FDT.

Moreover, in Table 6, we show the annual averages of the variance of x2 as

nonlinearity increases. We note a much faster growth of the annually-averaged

variance as a function of a0 than it was in the case with non-resonance forcing

(Table 3). The very rapid growth of the variance of x2 as a function of the

nonlinearity strength a0 is a consequence of resonant forcing.

Next, we study the skill of the qG-FDT response operators. Similar to the

non-resonant case discussed in Section 5.3, we first discuss the mean response

to the changes in forcing. In Table 7, we show the singular values of the ideal

and qG-FDT response operators for three averaging windows (first month, third

season, and full year) and for increasing strength of the nonlinearity parame-

ter a0. We note that as the nonlinearity grows, the largest singular value grows

significantly for the monthly and seasonal ideal averaged mean responses. More-

over, the other two singular values also depend on the nonlinearity parameter

a0 for the monthly and seasonal ideal averaged mean response operators, one of

them decreases and the other one increases as a0 grows. On the other hand, the

singular values of the operator for the annually averaged mean response to the

perturbations of forcing are practically independent of a0. This phenomenon

can be attributed to the fact that annually-averaged pdfs of the system are

much more Gaussian than the monthly or seasonally averaged pdfs as can be

seen from Fig. 6 and Table 6. In Table 7, we compare the ideal and qG-FDT

operators for the time-averaged mean response to the changes in forcing and the

corresponding singular values. We also show these singular values as function of

nonlinearity strength a0 in Fig. 7 (upper panel). We note surprisingly excellent

agreement between the ideal and qG-FDT response operators when compared

by the corresponding singular values. Even with the strongest nonlinearity that

we considered (a0 = 0.35), the error in predicting the singular values by qG-

FDT does not exceed 10%. This numerical experiment shows very high skill of

the quasi-Gaussian approximation of FDT for the mean response to the changes

in forcing even in a strongly non-Gaussian regime with the two-peaked pdf.
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Next, we consider the variance response to the changes in dissipation. We

found that the variance stays almost constant over the whole year period, there-

fore, the annually averaged values of variance given in Table 6 represent the

variance in the each month of the year. We note that the variance increases six

times as a0 grows from a0 = 0 to a0 = 0.35, which is a consequence of the reso-

nant forcing. In Table 8, we compare the ideal and qG-FDT variance response

operators to the changes in dissipation and corresponding singular values. We

also show these singular values as function of nonlinearity strength a0 in Fig. 7

(lower panel). We first note that the larger singular value of the ideal variance

response to the changes in dissipation grows at an extremely high rate as a0

grows from a0 = 0 to a0 = 0.20. Then, as a0 increases further up to a0 = 0.35,

the larger singular value changes insignificantly. On the other hand, the larger

singular value of the qG-FDT variance response to the changes in dissipation

has a less rapid but steady growth as a0 changes from a0 = 0 to a0 = 0.35. The

smaller singular value has an opposite trend, i.e., for the ideal operator it grows

with a smaller rate than for the qG-FDT operator.

Finally, we consider the monthly response of the variance to changes in

external forcing across all months for the resonant forcing case with a0 = 0.35

(see fourth raw in Table 1). This is an extremely difficult test case for the

quasi-Gaussian approximation since a purely Gaussian approximation would

give zero response [25]. The largest singular value of the ideal response for each

month is reported in Fig. 8. There is an extremely strong variance response at

some months and a weaker one elsewhere. This difficult trend is captured very

well by the qG-FDT operator (see Fig. 8). The next largest singular value for

all months is almost two orders of magnitude smaller and the smallest one is

identical zero; both of them are well captured by qG-FDT but not reported here.

This provides unambiguous evidence that the qG-FDT algorithm produces the

correct correlations among the modes with high skill.
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6. Conclusions

Time-periodic FDT is tested in this paper on a stochastic nonlinear triad

model with periodic forcing and exactly solvable first and second order statistics.

The model is designed to mimic the seasonal cycle in the system of two Rossby

waves nonlinearly interacting with a zonal jet where the Rossby waves are forced

by moist processes and the zonal jet is driven by polar temperature gradient.

We provided a brief introduction to the general time-periodic FDT, in Sec-

tion 2. Then, in Section 3, we discussed the stochastic triad model and showed

how to find analytically first and second (and, in principle, any) order statistics.

Next, we explained how these exact statistics are utilized to compute the ideal

response of the system for the time-averaged mean and variance to the pertur-

bations of external forcing or dissipation. The ideal response is then used as a

benchmark for the response operators obtained via FDT. Then, in Section 4,

we showed how to construct quasi-Gaussian approximation to the operators for

time-averaged mean and variance response to the changes in forcing and dissi-

pation for the triad model (35), (36). Here, we also need to utilize the exact

mean and covariance in order to construct the Gaussian pdf with the same first

and second order moments as in the original system. Then, in Section 5, we

develop a series of stringent and unambiguous tests for the qG-FDT using the

triad model (35), (36), where we compute the skill of the qG-FDT operators for

the mean response to the changes in the forcing and for the variance response

to the changes in dissipation with the corresponding ideal operators. We have

found that in the near-Gaussian regime, qG-FDT has very high skill for the

mean response to the changes in the forcing. Moreover, surprisingly this skill

stays high even when the system departs from Gaussian regime and even has

two peaked pdf as in Fig. 5. On the other hand, qG-FDT is found to have less

skill in approximating the ideal variance response to the changes in dissipation.

We attribute this behavior of qG-FDT to the fact that the variance response

to the changes in dissipation is computed using the fourth order two-time cor-

relation function where non-Gaussian effects can be more significant while the
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mean response to the changes in forcing is computed using the second order

two-time correlation function. Moreover, we considered three different averag-

ing times, i.e., averaging over one month, one season, and the whole year. In

our test cases, the pdfs averaged over longer time (season or year) were closer

to Gaussian state than the pdfs averaged over shorter time (month or season).

This lead to higher skill of qG-FDT for the statistics averaged over the whole

year.

There are a number of directions to proceed with the future work. One

can consider a more general type of perturbations of external forcing, δF =

a(u, s)δf(t), where a(u, s) actually depends on s as in the case of the perturba-

tions of the amplitude of external forcing. Another interesting question to ask

is whether we can replace the response function R(t) given by Eq. (11) with the

corresponding correlation only within the averaging time interval. This may

seem a simpler approach but it does not have solid theoretical justification.

One of the natural applications of the time-periodic FDT is to assess the ef-

fects of seasonal cycle on climate change using information theory for finding

the most “dangerous” perturbations [23, 27]. Also to make an approximation

for the FDT with the skill beyond qG-FDT, one can use moment estimators

as discussed in [23, 26, 1]. Finally, the time-periodic FDT developed in [27]

and studied here can be applied to realistic General Circulation Models with

seasonal cycle to address practical climate change issues. The results developed

here for the exactly solvable triad model should provide important guidelines

for the behavior of time-periodic FDT for these more complex systems. In par-

ticular, the model also allows for exact statistical solutions with time-periodic

dissipation and other straightforward more general perturbations.
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A. Second and third order statistics and ideal variance response to

the change in forcing and dissipation

We show how to find the second order statistics of u2 in the time-periodic

equilibrium state of the triad system (35), (36). By definition, we have

V ar(u2(t)) = 〈|u2(t)|
2〉 − |〈u2(t)〉|

2. (71)

We use Eq. (42) to find

〈|u2(t)|
2〉 = e−2γ2(t−t0)〈|u20|

2〉 +

∫ t

t0

∫ t

t0

e−γ2(2t−s−r)〈ψ(s, r)〉f2(s)f
∗
2 (r)dsdr

+e−γ2(t−t0)

(∫ t

t0

e−γ2(t−s)〈u20ψ(t0, t)ψ
∗(s, t)〉f2(s)

∗ds+ c.c.

)

+
σ2

2

2γ2

(

1 − e−2γ2(t−t0)
)

. (72)

Next, we consider the time-periodic equilibrium regime by taking the limit t0 →

−∞

〈|u2(t)|
2〉eq =

σ2
2

2γ2
+

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)〈ψ(s, r)〉f2(s)f
∗
2 (r)dsdr.

Therefore, the equilibrium variance becomes

V areq(u2(t)) =
σ2

2

2γ2
+

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)
(

〈ψ(s, r)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗
)

f2(s)f
∗
2 (r)dsdr, (73)

where 〈ψ(s, t)〉 is given by Eq. (47). Similarly, we find the cross-covariance in

time-periodic equilibrium

Coveq(u2(t), u2(t)
∗) = 〈u2(t)

2〉 − 〈u2(t)〉
2

=

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, t)ψ(r, t)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉)f2(s)f2(r)dsdr,

(74)

33



where [11, 12]

〈ψ(s, t)ψ(r, t)〉 = ei(〈J(s,t)〉+〈J(r,t)〉)− 1
2
(V ar(J(s,t))+V ar(J(r,t))+2Cov(J(s,t),J(r,t))), (75)

and 〈J(s, t)〉 and V ar(J(s, t)) are given by Eq. (48), (49), respectively, and

Cov(J(s, t), J(r, t)) = −
σ2

1a
2
0

2γ3
1

(

1 + 2γ1(max(s, r) − t) − e−γ1(t−s) − e−γ1(t−r) + e−γ1|s−r|
)

. (76)

Finally, we find the cross-covariance [11, 12]

Coveq(u2, u1) =
iσ2

1a0

2γ2
1

∫ t

−∞

f2(s)e
−γ2(t−s)〈ψ(s, t)〉

(

1 − e−γ1(t−s)
)

ds. (77)

Similarly, we compute the triple correlator 〈u′1u
′
1u

′
2〉eq for u′j = uj−〈uj〉, j = 1, 2

〈u′1u
′
1u

′
2〉eq = −

σ4
1a

2
0

4γ4
1

∫ t

−∞

f2(s)e
−γ2(t−s)〈ψ(s, t)〉

(

1 − e−γ1(t−s)
)2

ds. (78)

Below, we drop the subscript “eq” for simplicity of notation and assume that

all the statistics are computed in the time-periodic equilibrium regime. Here we

show how to find the mean and covariance of the triad (55) in the time-periodic

equilibrium regime. We find that

〈u〉eq =











〈u1〉

Re[〈u2〉]

Im[〈u2〉]











=











〈x1〉

〈x2〉

〈u2〉











, (79)

where 〈u1〉 is given in Eq. (39) and 〈u2〉 is given in Eq. (46). The covariance

matrix of the triad model (35) and (36) in the time-periodic equilibrium has the

form

Σ =











V ar(x1) Cov(x1, x2) Cov(x1, x3)

Cov(x1, x2) V ar(x2) Cov(x2, x3)

Cov(x1, x3) Cov(x2, x3) V ar(x3)











, (80)
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where

V ar(x1) = V ar(u1),

V ar(x2) =
1

2
(V ar(u2) +Re[Cov(u2, u

∗
2)]),

V ar(x3) =
1

2
(V ar(u2) −Re[Cov(u2, u

∗
2)]),

Cov(x1, x2) = Re[Cov(u2, u1)],

Cov(x1, x3) = Im[Cov(u2, u1)],

Cov(x2, x3) =
1

2
Im[Cov(u2, u

∗
2)]. (81)

Now, we obtain the ideal variance response to the changes in forcing

Rid
V,f =

1

t2 − t1

∫ t2

t1











∂V ar(x1)
∂fx1

∂V ar(x1)
∂fx2

∂V ar(x1)
∂fx3

∂V ar(x2)
∂fx1

∂V ar(x2)
∂fx2

∂V ar(x2)
∂fx3

∂V ar(x3)
∂fx1

∂V ar(x3)
∂fx2

∂V ar(x3)
∂fx3











dt, (82)

where

∂V ar(x1)

∂fxj

= 0,

∂V ar(u2)

∂fx1

=
ia0

γ1

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, r)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗)f2(s)f2(r)
∗(r − s)dsdr

∂V ar(u2)

∂fx2

=

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, r)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗)(f2(s) + f2(r)
∗)dsdr

∂V ar(u2)

∂fx3

= i

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, r)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗)(f2(r)
∗ − f2(s))dsdr

∂Cov(u2, u
∗
2)

∂fx1

=
ia0

γ1

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, t)〉〈ψ(r, t)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉)f2(s)f2(r)(2t − s− r)dsdr

∂Cov(u2, u
∗
2)

∂fx2

=

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)(〈ψ(s, t)〉〈ψ(r, t)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗)(f2(s) + f2(r))dsdr

∂Cov(u2, u
∗
2)

∂fx3

= i
∂Cov(u2, u2∗)

∂fx2

and Eqs. (81) were also used.

Now, we obtain the ideal variance response to the changes in dissipation

Rid
V,d =

1

t2 − t1

∫ t2

t1











∂V ar(x1)
∂γ1

∂V ar(x1)
∂γ2

∂V ar(x2)
∂γ1

∂V ar(x2)
∂γ2

∂V ar(x3)
∂γ1

∂V ar(x3)
∂γ2











dt, (83)
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where

∂V ar(x1)

∂γ1
= −

σ2
1

2γ2
1

,

∂V ar(x1)

∂γ2
= 0,

∂V ar(x2)

∂γ1
=

1

2

∂

∂γ1
(V ar(u2) +Re[Cov(u2, u

∗
2)]),

∂V ar(x2)

∂γ2
=

1

2

∂

∂γ2
(V ar(u2) +Re[Cov(u2, u

∗
2)]),

∂V ar(x3)

∂γ1
=

1

2

∂

∂γ1
(V ar(u2) −Re[Cov(u2, u

∗
2)]),

∂V ar(x3)

∂γ2
=

1

2

∂

∂γ2
(V ar(u2) −Re[Cov(u2, u

∗
2)]),

and the derivatives are computed at the point γ = (γ1, γ2)
T = 0. We use

Eqs. (73) and (74) to find

∂V ar(u2)

∂γ1
=

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)

[

∂〈ψ(s, r)〉

∂γ1
−
∂〈ψ(s, t)〉

∂γ1
〈ψ(r, t)〉∗

−
∂〈ψ(r, t)〉∗

∂γ1
〈ψ(s, t)〉

]

f2(s)f
∗
2 (r)dsdr (84)

and

∂Cov(u2, u
∗
2)

∂γ1
=

∫ t

−∞

∫ t

−∞

e−γ2(2t−s−r)

[

∂〈ψ(s, t)ψ(r, t)〉

∂γ1
−
∂〈ψ(s, t)〉

∂γ1
〈ψ(r, t)〉

−
∂〈ψ(r, t)〉

∂γ1
〈ψ(s, t)〉

]

f2(s)f2(r)dsdr, (85)
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where

∂〈ψ(s, t)〉

∂γ1
= 〈ψ(s, t)〉

(

i
∂〈J(s, t)〉

∂γ1
−

1

2

∂

∂γ1
V ar(J(s, t))

)

,

∂〈J(s, t)〉

∂γ1
= −a0

∫ t

s

ds′
∫ s′

−∞

(s′ − s′′)f1(s
′′)e−γ1(s

′−s′′)ds′′,

∂

∂γ1
V ar(J(s, t)) = −

3

γ1
V ar(J(s, t)) +

σ2
1a

2
0

γ3
1

(t− s)
(

1 − e−γ1(t−s)
)

,

∂〈ψ(s, t)ψ(r, t)〉

∂γ1
= 〈ψ(s, t)ψ(r, t)〉

(

i
∂〈J(s, t)〉

∂γ1
+ i

∂〈J(r, t)〉

∂γ1
−

1

2

∂

∂γ1
V ar(J(s, t))

−
1

2

∂

∂γ1
V ar(J(r, t)) +

∂

∂γ1
Cov(J(s, t), J(r, t))

)

∂

∂γ1
Cov(J(s, t), J(r, t)) = −

3

γ1
Cov(J(s, t), J(r, t)) −

σ2
1a

2
0

2γ3
1

(

1 + 2(max(s, r) − t)

+(t− s)e−γ1(t−s) + (t− r)e−γ1(t−r) − |s− r|e−γ1|s−r|
)

(86)

Next, we compute

∂V ar(u2)

∂γ2
= −

σ2
2

2γ2
2

−

∫ t

−∞

∫ t

−∞

(2t− s− r)e−γ2(2t−s−r)
(

〈ψ(s, r)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉∗
)

f2(s)f
∗
2 (r)dsdr, (87)

and

∂Cov(u2(, u
∗
2)

∂γ2
= −

∫ t

−∞

∫ t

−∞

(2t− s− r)e−γ2(2t−s−r)
(

〈ψ(s, t)ψ(r, t)〉 − 〈ψ(s, t)〉〈ψ(r, t)〉
)

f2(s)f2(r)dsdr, (88)
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Case γ1 γ2 σ1 σ2 ω0 a0 f2(t)

1 Near-Gaussian 0.1 0.2 0.1 0.1 10π/6 1 0.2ei(5π/6t+1)

2 Non-Gaussian

season

0.2 0.4 0.3 0.1 10π/6 1 ei(5π/6t+1) + 1

3 Non-resonant

forcing

0.1 0.1 0.2 0.2 π 0.1, 0.2, . . . , 0.5 0.2ei(5π/6·t+1)

4 Resonant forcing 0.1 0.1 0.2 0.2 5π/6 0.05, 0.10, . . . , 0.35 0.2ei(5π/6·t+1)

Table 1: Description of parameters for different test-cases. All four test-cases have the same

forcing of the first mode, f1(t) = sin(5π/6 · t).

Aver.
Ideal response FDT response

# time Operator Sing. Val. Operator Sing. Val.

month

2

6

6

6

4

10.000 0.000 0.000

−0.908 0.015 −0.212

0.049 0.212 0.015

3

7

7

7

5

2

6

6

6

4

10.041

0.213

0.212

3

7

7

7

5

2

6

6

6

4

9.837 −0.003 0.003

−0.845 0.045 −0.200

0.049 0.200 0.043

3

7

7

7

5

2

6

6

6

4

9.874

0.205

0.203

3

7

7

7

5

1 season

2

6

6

6

4

10.000 0.000 0.000

−0.660 0.012 −0.184

−0.639 0.184 0.012

3

7

7

7

5

2

6

6

6

4

10.042

0.184

0.183

3

7

7

7

5

2

6

6

6

4

10.075 −0.004 0.004

−0.651 0.042 −0.183

−0.615 0.1831 0.043

3

7

7

7

5

2

6

6

6

4

10.115

0.188

0.186

3

7

7

7

5

year

2

6

6

6

4

10.000 0.000 0.000

0.009 0.007 −0.192

−0.010 0.192 0.007

3

7

7

7

5

2

6

6

6

4

10.000

0.192

0.192

3

7

7

7

5

2

6

6

6

4

10.026 −0.003 0.003

0.010 0.033 −0.190

−0.007 0.191 0.033

3

7

7

7

5

2

6

6

6

4

10.026

0.193

0.193

3

7

7

7

5

month

2

6

6

6

4

5.000 0.000 0.000

−0.199 0.020 −0.211

−0.634 0.211 0.020

3

7

7

7

5

2

6

6

6

4

5.044

0.212

0.210

3

7

7

7

5

2

6

6

6

4

4.920 0.000 0.001

−0.150 0.057 −0.193

−0.654 0.243 0.030

3

7

7

7

5

2

6

6

6

4

4.966

0.248

0.194

3

7

7

7

5

2 season

2

6

6

6

4

5.000 0.000 0.000

−0.972 0.019 −0.181

−0.449 0.181 0.019

3

7

7

7

5

2

6

6

6

4

5.114

0.182

0.178

3

7

7

7

5

2

6

6

6

4

5.028 −0.001 −0.003

−0.928 0.021 −0.141

−0.433 0.202 0.038

3

7

7

7

5

2

6

6

6

4

5.131

0.205

0.140

3

7

7

7

5

year

2

6

6

6

4

5.000 0.000 0.000

−0.011 0.015 −0.192

−0.222 0.192 0.015

3

7

7

7

5

2

6

6

6

4

5.005

0.193

0.192

3

7

7

7

5

2

6

6

6

4

5.005 −0.001 −0.000

−0.013 0.038 −0.196

−0.220 0.196 0.040

3

7

7

7

5

2

6

6

6

4

5.009

0.201

0.199

3

7

7

7

5

Table 2: Ideal and qG-FDT operators for the time-averaged mean response to the changes in

external forcing and corresponding singular values for test-cases 1 and 2 from Table 1.
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Figure 1: (left column and the upper two panels of the right column) First and second

order equilibrium statistics for the triad (55) with the parameters given by the second row in

Table 1. Analytically obtained statistics (solid line) are compared with the results of Monte

Carlo averaging (pluses). (lower two panels of the right column) Skewness of x2 computed

through Monte Carlo averaging and the triple correlator 〈x′

1
x′

1
x′

2
〉 computed both through

Monte Carlo averaging and analytically. Note that time is measured in months here.
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Figure 2: Quasi-Gaussian response function, RG
M,f

(t) (Eq. (66)), for the annual-averaged

mean response to the perturbation of forcing for the near-Gaussian regime given in the first

row of Table 1. Note that the time is measured in years here.
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Figure 3: Solid line shows monthly, seasonally, and annually averaged pdfs for the near-

Gaussian test case with non-Gaussian season given in the second row of Table 1; the pdfs are

rescaled to have mean zeros and variance one. Dashed line shows standard normal distribution

N(0, 1) (on the first and third panels the solid and dashed lines are on top of each other).

The pdfs are obtained via Monte Carlo simulation.

a0 Variance
Skewness Flatness

MONTH 1 SEASON 3 YEAR MONTH 1 SEASON 3 YEAR

0.0 0.100 0.0020 0.0015 -0.0004 3.0084 3.0082 3.0082

0.1 0.101 -0.0015 0.0009 -0.0000 3.0047 3.0041 3.0050

0.2 0.106 -0.0009 0.0068 -0.0003 3.0134 3.0132 3.0106

0.3 0.109 -0.0239 0.0498 0.0001 3.0192 3.0467 3.0494

0.4 0.129 -0.0460 0.1244 0.0003 3.1232 3.1822 3.2842

0.5 0.149 0.0062 0.1755 0.0054 3.5395 3.4259 3.6971

Table 3: Variance of x2 averaged over full year and skewness and flatness of x2 averaged

over first month, third season, and full year for different values of a0. Non-resonant forcing

test-case with the parameters from the third row of Table 1.
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Figure 4: Monthly snapshots of time-dependent equilibrium pdf, p(x2, s), for the non-resonant

case given by the third row of Table 1 with a0 = 0.5. The pdfs are obtained via Monte Carlo

simulation.
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Figure 5: Monthly snapshots of time-dependent equilibrium pdf, p(x2, s), for the resonant

case given by the fourth row of Table 1 with a0 = 0.35. The pdfs are obtained via Monte

Carlo simulation.
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Figure 6: Thick solid line shows the pdfs of x2 averaged over first month, third season and full

year, and rescaled to have mean zero and variance one; thin line shows the standard Gaussian

distribution N(0, 1). Resonant forcing test-case with the parameters from the fourth row of

Table 1. The pdfs are obtained via Monte Carlo simulation.
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Figure 7: (upper panel) Largest (solid line), medium (dashed line), and smallest (dotted line)

singular values of the mean response to the changes in external forcing as functions of a0.

Singular values of the ideal operator are shown with circles and those of qG-FDT operator

are shown with crosses. The response operator is averaged over the first month. Resonant

forcing test-case with the parameters from the fourth row of Table 1 is shown. The singular

values are taken from Table 7. (lower panel) Same as upper panel but for variance response to

the changes in dissipation. The larger singular value is shown with solid lines and the smaller

singular value is shown with dotted lines. The singular values are taken from Table 8
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Figure 8: Largest singular value of the variance response to the changes in external forcing for

each month. Thick dashed line connects the singular values of the ideal response operator and

the dotted line connects the corresponding values of the qG-FDT response operator. Resonant

forcing test-case with the parameters from the fourth row of Table 1 and a0 = 0.35.

49



a0

Month Season Year

Ideal FDT Ideal FDT Ideal FDT

0.0

10.000

0.317

0.317

9.787

0.316

0.315

10.000

0.317

0.317

9.960

0.316

0.315

10.000

0.317

0.317

9.919

0.319

0.319

0.1

10.025

0.330

0.329

9.795

0.328

0.328

10.020

0.308

0.308

9.960

0.307

0.305

10.000

0.318

0.318

9.906

0.320

0.320

0.2

10.110

0.343

0.340

10.062

0.343

0.339

10.091

0.299

0.297

10.212

0.297

0.295

10.000

0.319

0.319

10.084

0.321

0.320

0.3

10.285

0.358

0.348

10.217

0.356

0.346

10.234

0.289

0.283

10.340

0.286

0.280

10.000

0.319

0.319

10.062

0.321

0.321

0.4

10.579

0.373

0.352

10.568

0.375

0.361

10.474

0.277

0.265

10.639

0.276

0.257

10.000

0.320

0.320

10.112

0.325

0.325

0.5

10.957

0.389

0.355

10.890

0.397

0.377

10.782

0.264

0.245

10.912

0.257

0.229

10.001

0.322

0.322

10.098

0.330

0.329

Table 4: Singular values of ideal and qG-FDT operators for the time-averaged mean response

to the changes in external forcing for the third test-case from Table 1 with the non-resonant

forcing.
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a0

Month Season Year

Ideal FDT Ideal FDT Ideal FDT

0.0
2.020

1.428

1.924

1.410

2.020

1.428

1.962

1.435

2.020

1.428

1.952

1.429

0.1
2.020

1.438

1.976

1.439

2.020

1.438

2.008

1.461

2.020

1.438

2.002

1.457

0.2
2.022

1.475

1.969

1.485

2.022

1.474

2.001

1.510

2.022

1.474

1.993

1.505

0.3
2.046

1.560

2.118

1.549

2.045

1.560

2.153

1.578

2.045

1.559

2.144

1.570

0.4
2.252

1.653

2.956

1.724

2.242

1.650

2.986

1.753

2.242

1.647

2.975

1.742

0.5
2.813

1.667

4.958

1.827

2.802

1.671

4.998

1.870

2.799

1.660

4.977

1.850

Table 5: Singular values of ideal and qG-FDT operators for the time-averaged variance re-

sponse to the changes in dissipation for the third test-case from Table 1 with the non-resonant

forcing.

a0 Variance
Skewness Flatness

MONTH 1 SEASON 3 YEAR MONTH 1 SEASON 3 YEAR

0.00 0.10 0.0076 -0.0060 0.0004 3.0168 3.0158 3.0148

0.05 0.14 -0.0901 -0.0189 -0.0000 2.9984 3.0033 3.0256

0.10 0.25 -0.2468 -0.0947 -0.0023 2.7937 2.8481 3.1285

0.15 0.37 -0.3052 -0.1292 -0.0047 2.5346 2.6302 3.0800

0.20 0.47 -0.3145 -0.1309 -0.0061 2.3731 2.4638 2.8673

0.25 0.53 -0.3019 -0.1164 -0.0072 2.3008 2.3626 2.6852

0.30 0.57 -0.2673 -0.1017 -0.0073 2.2434 2.2972 2.5393

0.35 0.59 -0.2310 -0.0953 -0.0069 2.2335 2.2791 2.4535

Table 6: Variance of x2 averaged over full year and skewness and flatness of x2 averaged over

first month, third season, and full year for different values of a0. Resonant forcing test-case

with the parameters from the fourth row of Table 1.
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a0

Month Season Year

Ideal FDT Ideal FDT Ideal FDT

0.00

10.000

0.375

0.375

9.911

0.348

0.342

10.000

0.375

0.375

10.030

0.405

0.401

10.000

0.375

0.375

10.030

0.405

0.401

0.05

13.648

0.387

0.284

13.472

0.365

0.261

13.090

0.355

0.271

13.102

0.381

0.296

10.000

0.377

0.377

9.986

0.384

0.384

0.10

18.631

0.401

0.215

18.424

0.380

0.206

17.434

0.341

0.195

17.487

0.360

0.206

10.001

0.380

0.380

10.074

0.384

0.384

0.15

21.294

0.413

0.194

20.672

0.395

0.187

19.772

0.329

0.167

19.487

0.340

0.179

10.002

0.381

0.381

10.067

0.380

0.380

0.20

21.987

0.421

0.192

20.757

0.417

0.193

20.368

0.321

0.157

19.542

0.328

0.170

10.004

0.382

0.382

10.061

0.382

0.382

0.25

21.624

0.428

0.198

19.738

0.435

0.206

20.027

0.315

0.157

18.608

0.316

0.170

10.006

0.382

0.382

9.969

0.383

0.382

0.30

20.815

0.433

0.208

18.886

0.447

0.226

19.294

0.310

0.161

17.840

0.307

0.175

10.008

0.382

0.382

10.105

0.382

0.381

0.35

19.873

0.437

0.220

17.880

0.460

0.245

18.448

0.307

0.167

16.946

0.304

0.181

10.010

0.383

0.382

10.177

0.384

0.382

Table 7: Singular values of ideal and qG-FDT operators for the time-averaged mean response

to the changes in external forcing for the fourth test-case from Table 1 with the resonant

forcing.
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a0

Month Season Year

Ideal FDT Ideal FDT Ideal FDT

0.00
2.020

1.428

1.908

1.379

2.020

1.428

1.934

1.397

2.020

1.428

1.929

1.389

0.05
4.242

1.942

2.646

2.197

4.166

1.942

2.636

2.230

3.931

1.941

2.532

2.206

0.10
9.917

1.939

3.480

2.155

9.726

1.939

3.495

2.148

9.159

1.936

3.407

2.115

0.15
14.338

2.014

4.228

2.252

14.155

2.001

4.287

2.237

13.644

1.959

4.264

2.098

0.20
16.643

2.126

4.780

3.154

16.514

2.090

4.833

3.044

16.171

1.983

4.812

2.554

0.25
17.416

2.201

5.654

3.225

17.331

2.149

5.693

3.077

17.119

2.001

5.546

2.387

0.30
17.317

2.227

7.232

3.268

17.263

2.169

7.213

3.062

17.132

2.012

7.027

2.388

0.35
16.786

2.220

8.437

3.103

16.750

2.164

8.485

2.959

16.668

2.018

8.305

2.392

Table 8: Singular values of ideal and qG-FDT operators for the time-averaged variance re-

sponse to the changes in dissipation for the fourth test-case from Table 1 with the resonant

forcing.
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